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Surface-layer phase transitions in nematic liquid crystals
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Surface-layer transitions in nematogenic materials characterized by a preferential planar surface in-
teraction linear in the order parameter have been studied theoretically at temperatures above the bulk
transition (Ty;). The coupled Euler-Lagrange nonlinear differential equations obtained from the
Landau-de Gennes free energy were solved exactly by numerical integration. This problem had been
studied previously employing various limits and approximations with several differences in the phase di-
agram reported. The exact results allow one to determine which of these differences are artifacts of the
approximations used and which are dependent upon the ratio of elastic constants. It is found, for physi-
cally relevant elastic constants, that there is always a uniaxially ordered surface layer at sufficiently high
temperatures. For weak surface coupling, no surface phase transition occurs and the uniaxial layer
remains the stable state until Ty, is reached. When the surface coupling is increased, there is a single
first-order (prewetting) transition from uniaxial to biaxial surface ordering as the temperature is reduced
towards Ty;. This transition boundary becomes second order (by way of a tricritical point) when the
surface coupling is further increased. We also find that the mean-field boundary is suppressed due to
Berezinskii-Kosterlitz-Thouless (BKT)-type phase fluctuations. Also, these fluctuations can result in
the re-entrant (with increasing surface coupling strength) uniaxial-biaxial phase boundary terminating on
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the bulk transition line rather than becoming asymptotic to it.

PACS number(s): 61.30.Gd, 64.70.Md, 68.45.Gd

The development of orientational order near surfaces
and interfaces in nematogenic materials has been the
focus of theoretical and experimental investigation for
the past two decades. Most of these studies concentrated
on the effect of homeotropic or homogeneous alignment
of molecules at the surface [1-7]. As first suggested by
Sheng [4], such alignment can lead to a prewetting phase
transition in the boundary layer at a temperature above
and separate from the bulk nematic-isotropic transition.
For intermediate surface coupling, this prewetting transi-
tion line ends in a critical point in the interaction
strength-temperature plane. More recently, it has been
suggested that, for an unrubbed polymer coated substrate
with no preferred direction in the plane of the surface,
the molecules of the nematic liquid crystal may lie per-
pendicular to the substrate normal, resulting in a uniaxial
surface layer with negative orientational order at temper-
atures well above the bulk nematic-isotropic phase transi-
tion (T, ) [8]. This type of ordering leads to the possibil-
ity of two-dimensional transitions from a uniaxial to a bi-
axial surface layer when the surface coupling exceeds a
critical value in the interaction strength-temperature
plane.

Surface alignment at temperatures above the bulk
nematic-isotropic transition on systems characterized by
planar boundary conditions was first studied by Sluckin
and Poniewierski [8], who considered a surface interac-
tion linear in the order parameter and minimized the
Landau-de Gennes free energy expression. Because the
minimization equations cannot be solved analytically for
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arbitrary values of the elastic constants, they considered
a limiting case in which one of the two symmetry-allowed
elastic constants vanishes. The resulting phase diagram
in the interaction strength (v) -temperature (¢) plane [8,9]
can then be divided into four distinct regions [see Fig.
1(a)]. For extremely weak surface coupling (region 1;
0<v<wv,), only a uniaxially ordered surface layer exists
for T > Ty;. For slightly larger interaction strength (re-
gion 2; v, <v <wv,), there is a first-order transition from a
uniaxial to a biaxial surface layer as the temperature is
lowered towards T;. This prewetting line meets the
bulk phase boundary at v, which divides regions 1 and 2.
For intermediate surface coupling (region 3; v, <v <wvj3),
there is first a continuous (second-order) transition from
the uniaxial to an ordered biaxial layer as the tempera-
ture is decreased. As the temperature is further reduced,
there is a first-order transition with no change in symme-
try from this ordered biaxial layer. This first order
boundary between the two ordered biaxial phases ends in
a critical point. Finally when the surface coupling is in-
creased beyond the critical point (region 4; v > v3), there
is only a continuous transition from the uniaxial to the
biaxial surface layer. These results were later confirmed
by Sheng et al. [10], who considered this problem more
generally using the same limiting condition.

L’vov, Hornreich, and Allender [11] considered the
same physical model but allowed the elastic constants to
take arbitrary values. Since this made it impossible to
analytically solve the minimization equations, an approx-
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FIG. 1. Schematic versions of phase diagrams given in (a) [8],
(b) [11], defining regions 1-4 in the surface interaction strength
(v) -temperature (¢) plane. See text for details.

imate approach (known as the Ritz procedure), based
upon using a trial function for the biaxial order parame-
ter, was used. Their trial function had two free parame-
ters, which were determined by minimizing the free ener-
gy. Although their phase diagram (in the interaction
strength-temperature plane) has features in common with
that of Sluckin and Poniewierski, there are some
differences [see Fig. 1(b)]. Regions 1 and 2 are the same
as in Ref. [8]. For intermediate surface coupling (region
3), they find a continuous transition from uniaxial to bi-
axial surface layer ordering and a biaxial-biaxial transi-
tion line which terminates on the T; boundary at v;
rather than at a critical point. However, due to the ap-
proximations used, they note that this line is suspect. Re-
gion 4(a) (v; <v <wv,) of their phase diagram shows a con-
tinuous transition from the uniaxial to the biaxial surface
layer, in agreement with [8]. However, this region has an
upper bound (in v) as the continuous transition line ter-
minates on the T, boundary, thus giving rise to yet
another region [4(b); v>wv,] in their phase diagram
which, like region 1, has only a uniaxially ordered surface
layer at temperatures above the bulk transition.

There is thus an open question as to whether the
differences between the results of the two groups [8,11]
are artifacts of the different approximations used or are
really physical. To resolve this issue, we here reconsider
the Landau-de Gennes free energy expression and find ex-
act (albeit numerical) solutions to the problem which

suffer from neither simplified variational equations nor
approximate solution of the general equations.

We consider a semi-infinite nematic liquid crystal sam-
ple in the region z >0. The nematic tensor order parame-
ter, in a principal axis system, can be written in appropri-
ate reduced units [12] as

—u+n 0 0

1
py(r)=—= 0 —p—mn 0. (1
Ve 0 0 2u
Within this formulation, the reduced bulk free energy is
fo/ Al= [ A | Spt b imp
b 4 12
222,14
IR
1 2 2. 1
= l1+= — 2
+ 15 %)

Here A is the area in the x-y plane, £ is the correlation
length, £=z /€ and t is the scaled temperature [13]. The
bulk nematic-isotropic transition occurs at ¢ =1. The
elastic constant ratio is p. In the Sluckin-Poniewierski
approximation [8], our correlation length £ goes to zero,
which corresponds to taking the limit p— . Of course,
the reduced units — e.g., { — must be appropriately re-
scaled in this limit.

The surface contribution to the free energy is assumed
to be linear in the order parameter and is given by

fs/AE=v(0) , (3)

where v is proportional to the strength of the surface in-
teraction. Planar boundary conditions are obtained by
requiring v=0.

The total free energy (f}, +f;) is minimized when the
Euler-Lagrange equations

% 1+ %p W= p— 3ttt %#772 :

%7]"=%tn+2pn+g—p2n+%n3 , 4)
subject to the boundary conditions

w(0)=2v/ 1+%p , 7(0)=0, (5)

u(0)—0, n(0)—0, (6)

are satisfied. The solution to these Euler-Lagrange equa-
tions can be obtained using a general purpose code
(COLNEW), which solves mixed-order systems with mul-
tipoint boundary values [14]. The boundary condition at
infinity can be simulated numerically by truncating § at a
sufficiently large distance (take as {=b). However,
better numerical conditioning is achieved by constructing
a boundary condition which annihilates those modes in
the problem whose amplitude grows as ¢ increases [15].
In fact, such a modification of the boundary conditions is
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FIG. 2. (a) Phase diagram for p=200. Shown is the continu-
ous (PP’) transition boundary between the uniaxial and the bi-
axial surface layer, as obtained from a Landau (mean-field) for-
mulation. Also shown is the BKT boundary (EE’) between the
two layers, which on this scale overlaps PP’. (b) An enlarge-
ment of region 3 (see Fig. 1) of part (a). With decreasing tem-
perature, there is first a continuous transition (PP’) from a uni-
axial surface layer to a biaxial one. When the temperature is
further reduced, there is a prewetting transition (PC) at which
the biaxial surface layer goes into a more strongly ordered state.
This prewetting line ends at a critical point (C). Finally, P
denotes the critical end point and PL is the segment of the
prewetting transition line separating regions of uniaxial and bi-
axial surface order. Also shown is the BKT line (EE’), which
replaces the mean-field PP’. (c) An enlargement of regions 1
and 2 (see Fig. 1) of part (a), showing the prewetting line ( AL)
meeting the bulk transition line at t =1, v=wv,.
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necessary in order to find solutions very close to t =1 or
for large p’s. In our case, the modified boundary condi-
tions at infinity reduce to

w'(b)+Aub)=0,

7'(b)+A,m(b)=0, (7)
with

A=t/(1+2p), M=t . (8)

3

A common way of describing surface layer transitions
is in terms of wetting [5,7,8,16], where the surface order-
ing is characterized by the parameters

r,= [ "nd¢, T,=— [ “uodc. )

In our representation, a complete wetting transition cor-
responds to I') and I'),— o as T— T;. If, on the other
hand, Fu is finite and I' . is either finite or zero, the wet-
ting is partial. A prewetting transition corresponds to a
discontinuous jump in I', and T, at a first-order transi-
tion above the bulk transition. We find that the uniaxial
layer partially wets the surface at the bulk transition
while the biaxial layer wets it completely.

The results of our calculations are summarized in Figs.
2-4. Tt is evident from these figures that the stability of
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FIG. 3. (a) Phase diagram for p=1. The phase boundaries
are as in Fig. 2(a). Here P and E denote the tricritical point, as
obtained from the Landau theory and that of BKT, respectively.
(b) An enlargement of the low interaction strength region of
part (a), showing the tricritical point (P /E) and the intersection
point (£ =1,v;).
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FIG. 4. (a) Phase diagram for p=—0.2. Here both the con-
tinuous transition line (PP’) and the alternate BKT line (EE’)
intersect the bulk transition line, z =1. (b) An enlargement of
the low interaction strength region of part (a).

the uniaxial or biaxial surface layer at temperatures
above the bulk transition depends not only on the surface
coupling (v), but also strongly upon the elastic constant
ratio (p). Figures 2(a), 3(a), and 4(a) are the phase dia-
grams for p=200, 1, and —0.2, respectively, and Figs.
2(b), 2(c), 3(b), and 4(b) are enlargements of the low sur-
face interaction strength region of these graphs.

It is found, for large p’s, that v,— o [see Fig. 2(a)] and
that the phase diagram has four regions [see Fig. 2(b)]
similar to those found by Sluckin and Poniewierski [see
Fig. 1(a)]. The prewetting transition line between the two
biaxial surface layers in region 3 of the phase diagram
ends in a critical point. As p is reduced from infinity, the
prewetting line shortens and eventually disappears at
p=~103. Therefore region 3 of the phase diagram disap-
pears for p $103 and, consequently, v,=v;. At p=103,
the critical point and the critical end point merge into a
tricritical point. For p S 103, the continuous transition
line meets the prewetting line in a tricritical point [see
Figs. 3(b) and 4(b)] instead of the critical end point seen
in Fig. 2.

The asymptotic part of the continuous phase boundary
found when v,— o shifts toward ¢t =1 as p is decreased
and finally intersects the bulk transition line at
p~=~ —0.05. Thus, for p S —0.05, the Landau theory re-

sult is that the uniaxial surface layer is the only stable or-
dered phase for T > Ty; when v> v,.

However, the continuous transition boundary deter-
mined from Landau theory, as noted by Sluckin and
Poniewierski [8], is not the true thermodynamic bound-
ary since the mean-field solution neglects fluctuations.
Close to the transition boundary, the uniaxially ordered
surface layer has the symmetry of the two-dimensional
XY model. Long-wavelength in-plane phase fluctuations
of the order parameter are therefore crucial, as shown by
Berezinskii [17] and Kosterlitz and Thouless [18,19].
These BKT fluctuations lead to the suppression of the
mean-field solution and result in a shift in the continuous
phase boundary [11]. For our case, the fluctuations are
characterized by an effective stiffness K, and the relevant
fluctuation free energy is given by [11,20]

FBKT=%K,,fd2r(V6)2 , (10)

where 6 is the in-plane angle between a local principal
axis and the x axis. The effective stiffness K, can be cal-
culated directly from our numerical solution for the order
parameter [11,20]. It then follows directly from the
analysis of BKT that the critical temperature T} is given
by [21]

lim K,=>k,T, , (11)
T—T,~ T

where k, is Boltzmann’s constant.

The BKT boundaries are calculated for T, =350 K us-
ing typical parameter values [22]. These are the relevant
continuous transitions for two-dimensional systems. As
can be seen in the figures, the biaxial surface layer be-
comes unstable with respect to BKT-type phase fluctua-
tions with increasing ¢ before the mean-field phase bound-
ary is reached. However, the gap between the mean-field
and BKT phase boundaries decreases with increasing p
and disappears entirely as p— o [see Fig. 2(a)]. We also
find that the BKT line intersects the bulk transition line
at p~0. Since the BKT boundary is the relevant one, we
see that region 4(b) in our phase diagram occurs, in fact,
for p S0 rather than p S —0.05.

A possible experimental method to detect the BKT
phase boundary is evanescent-wave ellipsometry [23],
which measures the phase difference A between p- and s-
polarized radiation incident on the liquid-
crystal-substrate interface and totally reflected at the
critical angle. Since the biaxial state is birefringent in the
film plane while the uniaxial one is not, this phase shift,
which is proportional to the birefringence, will character-
ize the phase transition experimentally. However, this
technique probes only singularities associated with static
critical behavior, so confirmation of the transition’s BKT
character may be difficult. A better approach may there-
fore be to study the dynamics of the critical behavior by
inelastic light scattering [20].

There has not been as yet any experimental
confirmation of a biaxial surface layer above the bulk
transition. This may be due to very weak surface cou-
pling. Physical p values are generally between O and 1.
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The values for the parameters in the free energy are ob-
tained by using the standard expression [4].

F= [ dz[ AS*—BS®+DS*+L(dS /dz)*+GS5(2)] .
(12)

In order to compare this expression with the uniaxial
contributions to Egs. (1) and (2) (i.e., n=0), we set
u=SD/B, t(=Bz/2VILD, v=D*?G/2VLB? and
f=(fy+f,)/AE=D?F/2V'LB®  Taking typical
values [4,22] B=0.53X10" ergs/cm®, D=0.98X10’
ergs/cm’, and L=4.5X10"7 ergs/cm, we obtain
G=2V'LB*>»/D*?=1.2v ergs/cm® Thus, for v=1.0,
which is in the theoretically interesting range, G=1.2
ergs/cm’. Experimentally, G can either be measured
directly or can be related to the anchoring energy W by
the relationship W =3G|S(0)|. Birefringence data
[24,25] on 4-cyano-4'-n-pentabiphenyl (SCB) gives G ~ 38
ergs/cm? for a rubbed polyvinyl alcohol coated surface,

but only 0.85 erg/cm? for an SiO film. Also, anchoring
energies W have been found to range from 1 down to
10~ % erg/cm? [26]. Thus the predicted phase transitions
should be observable as appropriate surface interaction
potentials are attainable. However, we have only con-
sidered a surface interaction linear in the order parame-
ter. Quadratic coupling could further increase the sur-
face interaction strength needed to observe the BKT
transition. Work is presently in progress to determine
the effect of including quadratic as well as linear terms in
the surface contribution to the free energy.
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